

"The Plastics Guy," a professor in the Department of **Materials Science** and Engineering at **Rutgers University-**New Brunswick, is a prolific inventor with more than 80 patents or patents pending in the

"I was an early pioneer in plastic recycling technologies, and about all the main technologies to recycle plastics were developed in our labs."

Above: Crushed polymer granules can be turned into new reused material. Thomas Nosker got his Ph.D. at **Rutgers University** in 1987 and has been a faculty member ever since.

My father passed away maybe six months after my college graduation, and I moved myself and my mother to New Jersey, where I had three siblings. I was hoping the grandchildren would keep her interested, and that worked.

I went to grad school at Rutgers and met my wife there. I got my Ph.D. in 1987 and have been working as a faculty member ever since. My undergraduate degree was in Mechanical Engineering, and my master's and Ph.D. degrees were in Materials Science and Engineering, specializing in Polymer Science.

Which courses do you teach?

I have taught classes in materials science and plastics processing, oriented toward packaging engineers as well as plastics recycling.

I was an early pioneer in plastic recycling technologies, and about all the main technologies to recycle plastics were developed in our labs. These include collection, sorting, resin recovery processes and recycled plastic lumber (including composites) technologies. Mechanical properties were a special focus in my classes.

How did this lead to your inventing recycled plastic lumber, and can you describe the many applications of this invention?

After our work on resin recovery processes—at first, Polyethylene Terephthalate or PET bottles, but adaptable to other plastics—which require separation from other plastics, we found that there were a lot of plastics in the recycling stream that were not worth the resin recovery process being employed. Yet the public kept feeding plastics that we weren't asking for into the recycling system.

The mixture of plastics was primarily highdensity polyethylene, so I gambled that we might be able to process the mixture in large, lumber-shaped molds at first-and make items of good utility. This worked. However, we found that reinforcing the material made it much more useful, and more load bearing.

Where is the recycled plastic lumber manufactured? Did you oversee the first production run?

Recycled plastic lumber without reinforcement was developed in the 1988-89 timeframe, at Rutgers University, in our labs. I went ahead and published how we did it and did not apply for a patent, so that it could be freely done by as many as possible.

I began working more secretly on low-cost, novel ways of reinforcing these materials, and that went through several generations of technology development.

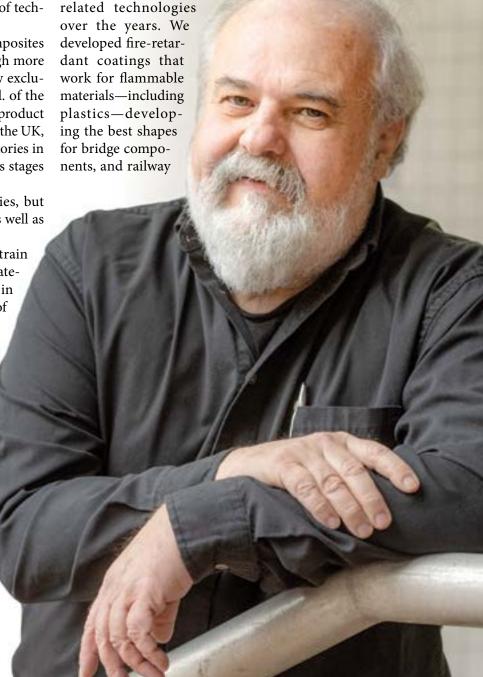
The structural recycled plastics composites technologies licensing has been through more than one company's hands and is now exclusively licensed worldwide to Sicut, Ltd. of the UK. They recently sold \$88 million in product annually and have factories operating in the UK, and in Kansas. They have four new factories in several other countries, each at various stages of construction.

Initial focus has been on railway ties, but bridge components are being added, as well as other end uses.

Ultimately, we assisted in building train and railway bridges made of these materials on Army bases and road bridges in several states that are standing the test of time very well.

Were there any obstacles initially in product development, production, safety testing, importing or government regulations?

There were several types of obstacles, including wood-based construction materials companies trying to slow down standards development, and less-expensive composites technologies trying to block us as well. The Army Corps of Engineers helped us win those battles. The ASTM plastic lumber standards and test methods were basically developed in our labs.


Is this recycled plastic lumber sold for commercial use, such as at Home Depot?

The structural plastic lumber is not sold through big-box stores but is available through the manufacturer. Many companies make other plastic lumber-like products.

I understand you hold about 82 patents. Please tell us more about this.

My students and I have worked

on several different but

that we might be able to process the mixture in large, lumber-shaped molds at first—and make items of good utility. This worked."

ties that interact with the ballast, and most recently, layered materials that can be mined like graphite and mica, being exfoliated in-situ in molten polymers, and as reinforcing agents for those materials.

This latest group of technologies yields the most amazing mechanical and electrical properties.

Notably, most of the work required me to build or adapt machines in order to make them work. I usually get composition of matter patents and don't divulge the machines exactly. Compositions of matter are very hard to get around. But without those machines, we could never make the materials with the properties we need.

Please share with us the honor of being named a 2024 National Academy of Inventors (NAI) Fellow.

It's a huge honor to be named a Fellow of any National Academy. Universities use the number of members as a measure of success. The award was given in Atlanta, the week of June 23-27 this year. Ironically, it's kind of where I started.

What was your first invention?

Probably regular recycled plastic lumber. My first patent was reinforced recycled plastic lumber, made stiffer and stronger by adding polystyrene to the mostly HDPE (high-density polyethylene) materials available. This is an Immiscible Polymer Blend, and it was thought that mixing these plastics would not yield any advantage by people that had tried, and published.

What are your hobbies?

I've always loved machines and have worked on watches and clocks, cars, and now professionally on plastic processing machines.

Machines are much less complicated than people are. Because I am really focused on machines, that is probably the key to success for me as a materials scientist.

I modify or build machines to suit my ideas. Most materials scientists don't have that background. Most machine designers don't know materials science well enough to know what to build. The advantage of being cross-disciplinary is an important point for young people to understand.

2024 NAI CLASS OF FELLOWS

170 ELECTED TO THE HIGHEST PROFESSIONAL DISTINCTION AWARDED SOLELY TO INVENTORS

Ishwar Aggarwal, The University of North Carolina at Charlotte

Pierre Agostini, The Ohio State University

Mark Akeson, University of California, Santa Cruz

Yousef Al-Abed, The Feinstein Institutes for Medical Research

Herb Aldwinckle, Cornell University

Dan Ammon, University at Buffalo, The State University of New York

Alain Aspect, Institut d'Optique Graduate School

Corinne E. Augelli-Szafran, Southern Research Institute

Clinton Ballinger, Rensselaer Polytechnic Institute

Robert S. Balog, Texas A&M University

Prith Baneriee, University of Illinois at Chicago

Ronald Barrett-Gonzalez, University of Kansas

Robert Bartlett, University of Michigan

Peter Basser, National Institutes of Health

Moungi Bawendi, Massachusetts Institute of Technology

Dibakar Bhattacharyya, University of Kentucky

Pratim Biswas, University of Miami

Silvia Blemker, University of Virginia

William Branch, University of Georgia

Malcom Brenner, Baylor College of Medicine

Richard K. Brow, Missouri University of Science and Technology

Edgar B. Cahoon, University of Nebraska-Lincoln

Jianfeng Cai, University of South Florida

Hui Cao, Yale University

Arnold Caplan, Case Western Reserve University

John Cioffi, Stanford University

Corie L. Cobb, University of Washington

Eric W. Cochran, Iowa State University

Daniel Codd, University of San Diego

Todd Cohen, New York Institute of Technology

Bruce N. Cronstein, New York University Grossman School of Medicine

Maria Croyle, The University of Texas at Austin

Anthony Czarnik, University of Nevada, Reno

Arvin Dar, Memorial Sloan Kettering Cancer Center

Matthew Dar, Iowa State University

Hiranmoy Das, Texas Tech University Health Sciences Center

Kenneth Dawson-Scully, Nova Southeastern University

Edward Delp, Purdue University

Horacio Dante Espinosa, Northwestern University

Ying Fang, University of Illinois Urbana-Champaign

Aaron Franklin, Duke University

Eby Friedman, University of Rochester

Klaus Früh, Oregon Health & Science University

Lilit Garibyan, Massachusetts General Hospital & Harvard University

Robert Garry, Jr., Tulane University

Manas Ranjan Gartia, Louisiana State University

Arun K. Ghosh, Purdue University

Simon Giszter, Drexel University

Steven Goldman, University of Rochester

Andrea Goldsmith, Princeton University

David Gracias, Johns Hopkins University

Joel Greenberger, University of Pittsburgh Jaime Grunlan, Texas A&M University

Ephraim Gutmark, University of Cincinnati

Keith Hearon, Augusta University

Larry Heck, Georgia Institute of Technology

Wolfgang Heidrich, King Abdullah University of Science and Technology

Joseph Heremans, The Ohio State University

University of Missouri-Kansas City

Mark Hoffman, University of Missouri-Kansas City

Kaibin Huang, The University of Hong Kong

Bertram Jacobs, Arizona State University

Hamid Jafarkhani, University of California, Irvine

Shibin Jiang, The University of Arizona

Christopher S. Johnson, Argonne National Laboratory

Sergei V. Kalinin, The University of Tennessee, Knoxville & Pacific Northwest

National Laboratory

Homayoon Kazerooni, University of California, Berkeley

Brian G. Kiernan, New Jersey Institute of Technology

Steven Koester, University of Minnesota

Johann Kolar, ETH Zurich - Swiss Federal Institute of Technology Zurich

Farinaz Koushanfar, University of California, San Diego

Ferenc Krausz, Max Planck Institute of Quantum Optics

Ashok Kumar, University of South Florida

Eren Kurshan, Princeton University

loannis Kymissis, Columbia University

Klaus Lackner, Arizona State University

Gregory Lanza, Washington University in St. Louis

Chih-Kung (C.K.) Lee, National Taiwan University

Hai Li. Duke University

Matthew Laskoski, U.S. Naval Research Laboratory

Hui (Helen) Li, Florida State University

Wenbin Lin, University of Chicago

Walter Ian Lipkin, Columbia University

Xuedong Liu, University of Colorado Boulder

Devinder Mahaian. Stony Brook University

Abhijit Mahalanobis, The University of Arizona

Stanton McHardy, The University of Texas at San Antonio

Michael McLaughlin, The University of Adelaide

Shawn Mehlenbacher, Oregon State University

Charles Melcher, The University of Tennessee, Knoxville

Tommaso Melodia, Northeastern University

Raiesh Menon, The University of Utah

Theodore Moise, The University of Texas at Dallas

David Morse, H. Lee Moffitt Cancer Center & Reseach Institute

Javad Mostaghimi, University of Toronto

Naima Moustaid-Moussa, Texas Tech University

Christopher Murray, University of Pennsylvania

Tina M. Nenoff, Sandia National Laboratories Gabriele Neumann, University of Wisconsin-Madison

Kytai T. Nguyen, The University of Texas at Arlington

Abhijit Mahalanobis, The University of Arizona

Michael Niederweis, The University of Alabama at Burmingham

Thomas Nosker, Rutgers, The State University of New Jersey

Rafail Ostrovsky, University of California, Los Angeles

Cynthia Owsley, The University of Alabama at Birmingham

Cengiz Ozkan, University of California, Riverside Makarand Paranjape, Georgetown University

Dan Peer, Tel Aviv University

Wellington Pham, Vanderbilt University

Edwin Piner, Texas State University

Yuri Peterson, Medical University of South Carolina

Konstantin Petrukhin, Columbia University

Darrin Pochan, University of Delaware Francisco Quintana, Harvard University

Muhammad Rabnawaz, Michigan State University

P. Srirama Rao, Virginia Commonwealth University

Ramesh Raskar, Massachusetts Institute of Technology

Edward Ratner, University of Houston

Jeffrey Reed, Virginia Tech

Fan Ren, University of Florida

Catherine Riddle, Idaho National Laboratory

Guillermo Risatti, University of Connecticut

Carol Robinson, University of Oxford

Cliona Rooney, Baylor College of Medicine Alberto Salleo, Stanford University

Richard Samulski, The University of North Carolina at Chapel Hill

Gaurav Sant, University of California, Los Angeles

Edward Sargent, Northwestern University

Charles Shoemaker, Tufts University

Daniel Siegwart, UT Southwestern Medical Center

Neal Sikka, The George Washington University

Blake Simmons, Lawrence Berkeley National Laboratory

Rajesh Singh, Morehouse School of Medicine

Anand Sivasubramaniam, The Pennsylvania State University

Yiqiao Song, Harvard University

Vivek Sujan, Oak Ridge National Laboratory

Zhaoli Sun, Johns Hopkins University Nian Sun, Northeastern University

Yang Tao, University of Maryland, College Park

Ravi Thadhani, Emory University

(Aaron) Voon-Yew Thean, National University of Singapore

Ashley Thrall, University of Notre Dame

Martin Thuo, North Carolina State University

Theo T. Tsotsis, University of Southern California Francisco Valero-Cuevas, University of Southern California

Omid Veiseh, Rice University

Victor Veliadis, North Carolina State University

Uzi Vishkin, University of Maryland, College Park

Edmund Waller, Emory University

Angela Wandinger-Ness, The University of New Mexico

Guoan Wang, University of South Carolina

Grace Jinliu Wang, Worcester Polytechnic Institute

Dean C. Webster, North Dakota State University Di Wei, University of Cambridge

Marc Weinberg, Draper Laboratory (CDSL)

Ulrich Wiesner, Cornell University

Hugh E. Williams, RMIT University Peter Wipf, University of Pittsburgh

Gary E. Wnek, Case Western Reserve University Jang-Yen Wu, Florida Atlantic University

Wei Wu, University of Southern California

Younan Xia, Georgia Institute of Technology

Longya Xu, Florida State University

Zhen Xu, University of Michigan

Mengsu (Michael) Yang, City University of Hong Kong

Yang Yang, University of California, Los Angeles Jianhua Yu, University of California, Irvine

Carlos A. Zarate, Jr., National Institutes of Health

Zhongfei (Mark) Zhang, Binghamton University, State Univesity of New York

Ji-Guang (Jason) Zhang, Pacific Northwest National Laboratory Junshan Zhang, University of California, Davis

Min Zou, University of Arkansas

They Said What?

- 6 "It was framed as an 'improvement' to exchange
- "It's as obvious as a pivot foot drag, three-step layup or running-like-a-fullback slam dunk that a referee refuses
- 23 "We're going to need them to lend their name and tell policy makers that this is important for America."
- 36 "Mark your products with patent numbers, or watch your damages disappear faster than free doughnuts at a law firm meeting."

QUICK READS

- 12 InventorArchives
- 35 AI ABCs
- 43 They Wrote the Book on It
- 43 Now Starring: IP
- **45** Fond Farewells

Features

- 20 Eureka Momentum LMIT Event is Part of a Bigger Push
- 24 10 Questions With ... Thomas Nosker, New NAI Fellow

Inventor Spotlight

16 Sleep Comfort Takes Wing Woman's Fashionable Travel Wear

Departments

- 4 FluidityIQ Transforming Information Intelligence
- **6** Editor's Note 'New and Improved'
- 7 Everybody's Talking IP Genius Swift Builds Suspense
- 8 Inventor School Elementary, Essential Education
- 10 Time Tested The Breakaway Rim
- **14** Social Hour TikTok's Unique Advantages
- 30 Bright Ideas **Innovation That Shines**
- 32 Think Marketing Different Strategies to Consider
- 34 Prototyping Which Adhesive to Stick With
- 36 IP Market Importance of Patent Marking
- **40** Patent Pending Be Specific in Your Application
- 44 Eye On Washington Score One for Patent Owners
- 46 Inventiveness Focus on the Fun and Fascinating